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A New Type of Disordered Structure of A u C u 3  
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X-ray diffuse scattering with an intensity distribution of one-dimensionally elongated shape in reciprocal 
space is observed for a single crystal of AuCu3, which is in a transient state around the order-disorder 
transition point. The analysis is carried out on the basis of Wilson's model for the disordered structure of 
Aufu3. The probability that a unit cell at a given position is displaced by half the diagonal of the uhit- 
cell cube is derived as a function of the position of unit cell, and is found to be expressed by an exponen- 
tial function. 

Introduction 

It has previously been reported (Doi, Masaki & Ka- 
mada, 1969) that an unusual type of X-ray diffuse scat- 
tering with a cross-like distribution in reciprocal space 
was observed for a single crystal of a Au-Cu alloy, 
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Fig. 1. Intensity distribution around the relpoint 010, on the 
plane perpendicular to [001]. The heights of contours are 
expressed in arbitrary units. 

having a composition close to that of AuCu3. A single 
crystal of Au27Ctt73 [the composition being determined 
by the lattice parameter a =  3.757 + 0.005 .A, (Pearson, 
1958)] was annealed in vacum maintained at a tempera- 
ture of about 900°C for 3 days and then cooled down 
to room temperature in about 20 hours. Passage 
through the order-disorder transition point (390°C) 
was made with the cooling rate of 50 °C.hr-1, therefore 
the structure concerned may not necessarily corre- 
spond to a structure in thermal equilibrium. Intensity 
distribution was measured quantitatively and analysed 
using a technique similar to that developed for the 
structure analysis of a Guinier-Preston (G.P.) zone in 
an A1-Cu alloy (Doi, 1960). Cu Ka radiation, mono- 
chromated by the 101 reflexion of curved quartz, was 
used. Scattered intensities on a plane perpendicular to 
the [001] axis and passing through the reciprocal ori- 
gin were recorded by a NaI(T1) scintillator with pulse- 
height discrimination. The results obtained are shown 
in Fig. 1. Superlattice reflexions described previously 
(Doi et al., 1969) were too weak to be measured quan- 
titatively and are neglected in the following analysis. 

Structure analysis 

Since the diffuse scattering concerned has a one-dimen- 
sional distribution, the corresponding structural disor- 
der should also be of a one-dimensional nature, as 
first discussed by Wilson (1962) for the disordered struc- 
ture of AuCu3. 

Into the ordered structure of AuCu3, in which Au 
atoms occupy the cube corners and Cu atoms the face 
centres, a structural disorder is introduced by displac- 
ing a unit cell by a vector d in the (100) plane (see 
Fig. 2): 

d={(a2+a3) ,  (1) 
? ,  • ! ~  ,_ : _ _ , - -  .~_~: t .2 /_ ' ,  . ' J _ .  ~ : = _ _  : , : _ . ~ _ . _  _,L .~. 

where al, a2 and a3 are the unit translations. The dis- 
placements give rise to an elongation of, for example, 
the 010 relpoint along the [100] direction. Displace- 
ments of the same nature may also occur in the (010) 
and (001) planes, and the diffuse scattering will be of 
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the shape calculated by Wilson (1947, 1962). He has 
also remarked that the intensity distribution tends to 
be cross-like for the points far away from the relpoint 
010. 

If, as assumed by Wilson (1947, 1962), the displace- 
ments take place in a completely random and inde- 
pendent way, the intensity profile along the line YY' 
passing through the 010 relpoint (Fig. 1) should be of 
the Lorentzian form. Fitting of the observed profile 
with Lorentzian curves, however, proved unsuccessful, 
suggesting the existence of short-range correlations be- 
tween the displacements. (Fitting with Gaussian curves, 
proposed by Edmunds & Hinde (1952), was also un- 
successful.) 

The intensity I(s) of the scattered X-rays at a point 
s on a line YY' (Fig. 2) is expressed as 

I(s)=A(s)A*(s) . (2) 

If co(s) is the phase factor of scattered rays at the posi- 
tion s in the reciprocal space, the amplitude A(s) is 
expressed as: 

A(s)-A(som, $2)--~ A(sz)=[I(s2)] 1/z exp ico(s2) 
r,+X2 

= d l+Xl-X  ̀1--2(2 Q(XI'X2) exp 2Ei(s010X 1 + szx2)dxldx2 
+Xl =I+xi[~_xO(Xx, x2) exp2m'So,ox,dx,] 

x exp 2nis2x2dx2 

a+x2 
= \ Folo(Xz) exp 2zciszxzdx2 (3) 

,)-2"2 

where x = (xi, x2) and s = (sl, s2) are position vectors in 
direct and reciprocal spaces, axes 1 and 2 being taken 
parallel and perpendicular to the [010] axis, respec- 
tively [cf. Fig. 2(a) and (b)]. In the last row of equation 
(3), Folo(X2) dx2 denotes the 010 structure factor for the 
electron distribution Q (Xl, Xz) contained within (x2,xz 
+ dx2). It should be noted that, because of the finite 
resolving power in direct space, the coordinate Xz has 
a positional uncertainty Ax2. This uncertainty, in the 
present case is estimated to be about 15 A from the 
limit of integration ( - S  z, + Sz) in (6), which will be 
derived from (3) by an inversion. Folo(Xz) is therefore 
regarded as a mean value of the 010 structure factor 
for the electrons contained between Xz-½Ax2 and 
x2+½Ax2. 

Now let p(xz) be the probability that a unit cell at 
a position xz is displaced by the vector d of equation 
(1), then Folo(X2) can be expressed as 

Folo(Xz)=(fAu--fcu) [1 - 2p(x2)] 

where the 010 structure factor is fAu-fcu for a non- 
displaced unit cell, and - (fAu-fcu) for a displaced cell 
(Fig. 2). Here fau and fc~ denote the atomic form fac- 
tors of Au and Cu atoms, respectively. With equations 
(2), (3) and (4), the Fourier transform of the intensity 
distribution I(s2) is given as 

l (sz)  = FOlO(X2) * F010(x2) 

=(fAu-fcu)2[1-4 Ip(xz)dx2+4p(x2) * p(xz)] (5) 

where the symbol • means a convolution product of 
functions. Because the disorders involved seem to be 
correlated in a rather complicated way, as suggested 
by the failure of the Lorentzian curve fitting, the quan- 
tity in the right-hand side of (5) cannot lead to a very 
clear conclusion regarding the nature of the disorder. 
On the other hand, if the phase factor co(s) can be as- 
signed for diffuse scatterings in some reasonable way, 
as in the case of the structure analysis of G.P. zones 
(Doi, 1960; James & Liedl, 1965) and of the analysis 
of atomic size effects in disordered alloys (Doi, 1964), 
then from (3), the Fourier transform of amplitude dis- 
tribution A(s2) gives 

[ l l+SZds2A(s2)exp-2rcis2x2 
p(x2) =½ 1 fAu-feu  o-s2 

(6) 

It has, in fact, been shown that the phase assignment 
for the diffuse scatterings is feasible if the statistical 
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Fig.2. (a) Model of disordered structure of AuCu3 projected 
onto a plane perpendicular to [001]. The upper unit cell 
represents a non-displaced cell while the lower one is dis- 
placed by a vector d defined by equation (1). (b) The corre- 
sponding reciprocal space schematically represented. 
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centrosymmetry (Doi, 1960), described below, is as- 
sumed. 

It is noted that in practice the integration in the right- 
hand side of (6) is replaced by a summation: 

1 +N 
- 2nis~)x2] (7) p(-xz)S"= ½11 fAu-fcu -~ A(s~'°) exp 

where s(n) is the position of the point (n) sampled dis- 
cretely in reciprocal space. When these points are sam- 
pled at regular separations, As2= 1/a*L in reciprocal 
space, where L is to be determined in accordance with 
the resolving power with which we observe the recip- 
rocal space, then the value o f p ( x z )  L defined by (7) will 
represent the function p(x2) averaged over the points 
xz, x2 +_ aL, xz + 2aL, x2 + 3aL, . . ., x2 +_ maL .  . ., m be- 
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Fig. 3. Amplitude profile A(s2), derived from the intensity 

distribution along the line YY" in Fig. 1. The ordinate is in 
arbitrary units. Crosses show the points sampled, and the 
continuous curve gives the results of least-square curve- 
fitting which are used to derive the coefficients p(x2) L given 
in Fig.4. 
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Fig.4. The parameter p(x2) L against X2. p(x2) L measures the 
probability that a unit cell at position x2 is displaced by a 
vector d. Small crosses represent the values derived directly 
from the observed scatterings, and the continuous curve re- 
presents the values calculated from equation (14). 

ing an integer (Doi, 1960). Now, by statistical centro- 
symmetry we understand that 

p ( z J  , (8) 
whereas the centrosymmetry, in its exact meaning, 
requires the relation 

p ( x z ) = p ( - x 2 )  . (9) 

In the present observation, since the interval As2 is 
about (450 A) -a, L of equation (7) is estimated as 450 A/ 
3.76/~ = 120, so that the average is taken over the range 
as large as 120 unit cells. Since the size of coherent 
domains (mosaics) in this crystal, estimated from the 
width of the fundamental 020 reflexion, is found to be 
very much larger than the above-estimated value of L, 
the statistical centrosymmetry (8) may well be expected 
to hold, although the exact centrosymmetry (9) is by 
no means valid for disordered structures. 

For assumption (8), the phase factor exp ico(s) is re- 
stricted to either + 1 or - 1 for s = s(n). If  we assume 
for the 010 relpoint that 

exp/co(s)= + 1 ,  S=Solo (10) 

the same phase is to be allotted to every sampling point 
surrounding the relpoint 010 (Doi, 1960). Condition 
(10) implies that, in the crystal (or more exactly, in 
each of coherent domains (mosaics) in the crystal), the 
total number of non-displaced cells is larger than that 
of displaced cells. We put the origin of direct space on 
one of those non-displaced cells, viz, 

p(xz )=0 ,  x z=O (11) 

where, as remarked above, the expression x2 = 0 is un- 
derstood to involve an uncertainty Ax2. Note that if 
the numbers of both kinds of cells were exactly equal, 
the scattered intensity would vanish at the 010 relpoint. 

As a result of the averaging operation discussed 
above in relation to the statistical centrosymmetry (8), 
the condition (11) should be rewritten as: 

p(x2)L=0, x 2 = 0 .  (12) 

Condition (12) means that, in direct space all points 
at a distance reaL from the origin (m being an integer) 
are occupied by non-displaced unit cells. This will not 
be the case with disordered structures, and we can as- 
sume a priori  only that 

p(x2) L < ½ , x2=0 (123 

which simply implies that more non-displaced cells than 
displaced ones exist in the crystal, and that the origin 
of the direct space coincides with one &those  non-dis- 
placed cells. If  a displaced unit cell occurs at a distance 
m a L  from the origin, in contrast with condition (12), 
the origin can be moved so that a non-displaced cell 
again occurs at a distance m a L  from the origin. 

The value of aL  concerned (450 A) is certainly much 
longer than the distance within which the presence of 
non-displaced cell at the origin affects the nature of 
other cells, but, on the other hand, the distance re- 
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quired for a non-displaced cell to be present in the 
vicinity of the maL position is in general within the 
limit of uncertainties in direct space (AXE being about 
15 A, or 3 to 4 unit translations). We can thus expect 
the validity of condition (12) to a fair approximation. 
Indeed, it is seen that, with (12) we can convert the 
observed amplitude into an electron unit, viz, 

A(s~ )) = (fAu - fcu)  • (13) 
n 

If  absolute measurements were made with sufficient 
precision, we could examine to what extent condition 
(12) holds. Later, it will be seen that the conclusion 
of the present analysis is essentially unaffected by the ar- 
bitrariness of the scale for observed intensities or am- 
plitudes. 

Fig. 3 shows A(sz) plotted as a function of (SEt and 
is derived from the intensity profile I(sz) using equa- 
tion (2), condition (10) and the statistical centrosym- 
merry (8). This function may be substituted into (7) to 
obtain the probability parameter p(xz) n. In order to 
avoid termination error in the summation of (7), a 
least-square fitting was made with a F O R T R A N  pro- 
gram written for the IBM 7044 computer, and the most 
probable values of  p(x2) v were derived and are shown 
in Fig. 4 by small crosses. The value ofp(x2) z for x2 = 0 
is fixed to be zero in accordance with (12), or (13). 

Discussion 

In Fig. 4, we have a non-displaced cell at the origin 
xz=O. At points as distant as about 150 A from the 
origin, both displaced and non-displaced cells are found 
with equal probabilities, corresponding to p(xE)r =½. 
In other words, the influence from the non-displaced 
cell at the origin ceases to be effective at points as dis- 
tant as 150 A from the origin. At intermediate distances 
behaviours ofp(xz) L are found to be characteristic. In 
Fig. 5 we plot the logarithm of ½ - p ( x j  against x2, 
the value of ½ being asymptotic wdue of p(x2) L. The 
plots, which are well approximated by a straight line 
as seen in Fig. 5, suggest thatp~2)  L may be expressed as 

p(~)2)z=½(1 - e -Ix2 ) (14) 

with l= (30 A) -1. The continuous curve in Fig. 4, rep- 
resenting equation (14), reproduces the observed values 
(crosses) fairly well. It was remarked in the previous 
section that the assumption (12) was equivalent to the 
normalization of A(s2) by (13), and botb of those were ex- 
pected to hold only approximately. Here it will be seen 
readily from (7) that even when the normalization by (13) 
is not exactly correct, the exponential form of p(x2) r" is 
still valid, although the coefficients in (14) may vary 
with the normalization factor to A(s2). The right-hand 
side of (13) is multiplied by this factor so that the ob- 
served values of A(s2) are expressed in an electron unit. 
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Fig.5. Logarithmic plot of ½-p(x2)  L against x2,½ being the 
asymptotic value of P(X2) L. 

The exponential law as expressed by (14) should not 
be compared with the exponential expression derived 
by Wilson (1962) for two-body correlation parameters, 
which is related to the Lorentzian form of the inten- 
sity profile, discussed in the previous section. The param- 
eter p(x2) r discussed here represents N-body correla- 
tion, N being as large as L ( =  120 in the present anal- 
ysis). 

The implication of the exponential law (14) is not 
immediately obvious. It may, however, be i n f e r r e d  
that equation (14) reveals a certain aspect of the me- 
chanism in the kinetics of ordering in the alloy when 
it is cooled through the transition point. As noted 
above, the structure described does not correspond to 
a thermal equilibrium but is a result of a passage 
through the order-disorder transition point on cooling. 

The assistance of Mr Moriguchi and Mr Iizumi in 
writing the F O R T R A N  program is gratefully acknowl- 
edged. 
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